Various subsets of self-avoiding walks naturally appear when investigatingexisting methods designed to predict the 3D conformation of a protein ofinterest. Two such subsets, namely the folded and the unfoldable self-avoidingwalks, are studied computationally in this article. We show that these two setsare equal and correspond to the whole $n$-step self-avoiding walks for$n\leqslant 14$, but that they are different for numerous $n \geqslant 108$,which are common protein lengths. Concrete counterexamples are provided and thecomputational methods used to discover them are completely detailed. A tool forstudying these subsets of walks related to both pivot moves and proteinsconformations is finally presented.
展开▼
机译:研究旨在预测目标蛋白质3D构象的现有方法时,自然会出现各种自我规避步行的子集。本文通过计算研究了两个这样的子集,即折叠的和不可折叠的自动回避步道。我们显示这两个集合是相等的,并且对应于$ n \ leqslant 14 $的整个$ n $步骤自我避免步行,但是对于许多$ n \ geqslant 108 $,它们是不同的,这是常见的蛋白质长度。提供了具体的反例,并详细介绍了用于发现它们的计算方法。最后提出了一种工具,用于研究与支点运动和蛋白质构象相关的步行的这些子集。
展开▼